вівторок, 25 квітня 2023 р.

 група  № 7 алгебра і початки аналізу        урок №60

26.04.2023

 Тема уроку:   Розв'язання логарифмічних рівнянь

1. Опрацюйте  відеоурок за посиланням

https://www.youtube.com/watch?v=88qEfP3Xwf4

2. Законспектуйте і запам'ятайте

При знаходженні області визначення слід пам’ятати:

1. Якщо функція має вигляд у = logа(f(х)), а > 1, а ≠ 1, то слід вважати

 f(x) > 0 (під знаком логарифма може стояти тільки додатний вираз).

Наприклад: якщо у = lg(x2 -5x + 6), то x2 - 5X + 6 > 0, тобто 

D(y) = (-∞; 2)(3; + ∞).

2. Якщо функція має вигляд у = log f(x) b, b > 0, то слід вважати  (основа логарифма може бути тільки додаток) і відмінною від одиниці).

Наприклад: якщо y = logx-110, то  тобто D(у) = (1; 2)(2; + ∞).

Приклади розв'язання логарифмічних рівнянь

- Розв’яжіть рівняння log3 (2x + 1) = 2.

Розв'язання

За означенням логарифма маємо

2х + 1 = 32, 2х = 8, х = 4.

Перевірка: log3 (2 ∙ 4 + 1) = log3 9 = 2.

Відповідь: 4.

- Розв’яжіть рівняння log3 х = log3 (6 - х2).

Розв'язання

Із рівності логарифмів чисел випливає

х = 6 - х2; х2 + х - 6 = 0; х1 = -3; х2 = 2.

Перевірка:

1) число - 3 не є коренем даного рівняння, бо вираз log3 (- 3) — не визначений;

2) log3х = log32; log3(6 - х2) = log3(6 - 22) = log32.

Відповідь: 2.

- Розв’яжіть рівняння logx+1 (2x2 + 1) = 2.

Розв'язання

За означенням логарифма маємо

2x2 + 1 = (х + 1)2; 2x2 + 1 = х2 + 2х + 1; х2 - 2х = 0; х1 = 0; х2 = 2.

Перевірка:

1) значення x = 0 не є коренем даного рівняння, оскільки основа логарифма x + 1 не повинна дорівнювати 1;

2) log2+1 (2 ∙ 22 + 1) = log3 9 = 2.

Відповідь: 2.

Розглянемо ще два методи розв'язування логарифмічних рівнянь

1. Метод зведення логарифмічного рівняння до алгебраїчного.

Приклад : Розв’яжіть рівняння log22 х - 3 log2 х = 4.

Розв'язання

Позначимо log2 х через у. Дане рівняння набуває вигляду:

у2 - 3у = 4; у2 - 3у - 4 = 0; у1 = 4; у2 = -1.

Звідси log2x = 4, log2x = -1; x = 24, x = 2-1; x = 16, x = .

Перевірка:

1) log2216 - 31og2 16 = 16 -12 = 4;

2) log22 - 3log2  = 1 + 3 = 4.

Відповідь: 16, .

2. Метод потенціювання.

Приклад:. Розв’яжіть рівняння log5 (x - 1) + log5 (х - 2) = log5 (х + 2).

Розв'язання

Пропотенціюємо дану рівність і одержимо:

log5 ((х - 1 )(х - 2)) = log5 (х + 2); (х - 1)(х - 2) = х + 2;

х2 - 2х - х + 2 = х + 2; х2 - 4х = 0; х(х - 4) = 0;

х = 0 або х = 4.

Перевірка:

1) значення х = 0 не є коренем рівняння, тому що вирази log5 (х - 1) і log5 (х - 2) не мають змісту при х = 0;

2) log5(х - 1) + log5(х - 2) = log5(4 - 1) + log5(4 - 2) = log53 + log52 = log5 (2 ∙ 3) = log5 6.

Отже, x = 4 — корінь.

Відповідь: 4.

3. Розв'яжіть рівняння   

а)Подпись отсутствует

б)    lg (x-4)=1

 4.  Виконайте вправи

Подпись отсутствует

Подпись отсутствует


5. Домашня робота (фото виконаних робіт прикріпити у класрум)

1. Розв’язати рівняння: 9x = 27.

2. Знайти корені рівняння: 

3. Розв’язати рівняння: 

4. Розв’язати рівняння: log 2 х = 3.

5. Знайти корені рівняння: 

6. Розв’язати рівняння: 

7. Розв’язати рівняння:  Якщо рівняння має кілька коренів, записати у відповідь їх добуток.


Немає коментарів:

Дописати коментар