група № 4 факультатив
29.03.2023
Тема уроку: Властивості показникової функції
1. Опрацюйте відеоурок
https://www.youtube.com/watch?v=Rsr6TWBnzPM
2. Законспектувати і вивчити
Функцію, задану формулою у = ах (де а > 0, а ≠ 1) називають показниковою функцією.
Приклади показникових функцій:
тощо.
Розглянемо функцію у = 2х. Складемо таблицю значень функції для кількох цілих значень аргументу.
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | 1/8 | 1/4 | 1/2 | 1 | 2 | 4 | 8 |
Зауважимо, що 2х > 0 для всіх значень х, тому графік функції у = 2х не перетинає вісь абсцис. Графік функції у = 2х зображено на малюнку 85. При всіх значеннях а > 1 графік функції у = ах схожий на графік функції у = 2х.
Розглянемо функцію у = (1/2)x. Складемо таблицю значень для кількох цілих значень аргументу.
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | 8 | 4 | 2 | 1 | 1/2 | 1/4 | 1/8 |
Оскільки (1/2)x > 0 для всіх значень х, то графік функції у = (1/2)x не перетинає вісь абсцис. Графік функції зображено на малюнку 86. При всіх значеннях 0 < а < 1 графік функції у = ах схожий на графік функції у = (1/2)x.
Сформулюємо основні властивості показникової функції.
1. Область визначення — множина R дійсних чисел.
2. Область значень — множина R+ всіх додатних дійсних чисел.
3. При a>1 функція зростає на всій числовій прямій; при 0<a<1 функція спадає на множині R.
ax1<ax2, якщо x1<x2,(a>1),
ax1>ax2, якщо x1<x2,(0<a<1)
4. При будь-яких дійсних значеннях x і y справедливі рівності
axay=ax+y
Графіки показникових функцій зображені на малюнках:
1) для випадку a>1
2) для випадку 0<a<1
Побудуємо графіки функцій y=2x і y=(12)x, використавши розглянуті властивості і знайшовши кілька точок, що належать графіку.
Приклад:
Відзначимо, що графік функції y=2x проходить через точку (0;1) і розташований вище осі Ox
Якщо х спадає, тоді графік швидко наближається до осі Ox (але не перетинає її);
якщо x>0 х зростає, тоді графік швидко піднімається вгору.
Приклад:
Графік функції y=(12)x також проходить через точку (0;1) і розташований вище осі Ox
Якщо x>0 х зростає, тоді графік швидко наближається до осі Ox (не перетинаючи її);
якщо x<0 х спадає, тоді графік швидко піднімається вгору.
Поазникові функції займають певну роль у житті людини. Наприклад, вони є математичними моделями таких процесів: зміна популяції протягом певного часу; зміна радіоактивності з плином часу.
Немає коментарів:
Дописати коментар