середа, 7 квітня 2021 р.

 07.04.2021     9 група                            Алгебра і початки аналізу

Тема уроку: Елементи статистики  (повторення)

1.  Прогляньте теоретичний матеріал за посиланням:

https://www.youtube.com/watch?v=t4gmv8Q4nLo

2. Розв'язування задач.  Зразки за посиланням:

https://www.youtube.com/watch?v=pRWaP0j6XP8

3. Розв'язати задачі за даною темою сертифікаційних робіт ЗНО 2020 і ЗНО 2021.

----------------------------------------------------------------------------------------------------------------------------

07.04.2021   9 група          Геометрія

Тема уроку: Тіла обертання.  (повторення)

1. Перегляньте відеоурок за посиланням:

https://www.youtube.com/watch?v=Q8AN__ZbsHk

2. Розв'язати тести на ст 137-139 підручника

3. Розв'язування задач за посиланням: (підготовка до ЗНО)

https://www.youtube.com/watch?v=HwmUayLHWIs


-----------------------------------------------------------------------------------------------------------------------------

07.04.2021       9 група        математика (факультатив)

Тема уроку:  Піраміда

Багатогранник, одна грань якого є n — кутником, а інші грані — трикутники із загальною вершиною, називається пірамідоюn-кутник називається основою піраміди, а трикутники — бічними гранями.
Спільна вершина бічних граней називається вершиною піраміди.
Відрізки, що з'єднують вершину піраміди з вершинами основи, називаються ребрами піраміди.
 
Залежно від кількості сторін основи, піраміди можуть бути трикутними, чотирикутними, п'ятикутними і т. д.
 
Перпендикуляр, проведений з вершини піраміди до площини основи, називається висотою піраміди.
Важливо знати, де на площині основи знаходиться проекція вершини піраміди, вона може бути в центрі основи, на стороні основи, за межами багатокутника основи. Розв'язання задачі більшою мірою залежить від розташування цієї точки.
  
Щоб намалювати піраміду, потрібно дотримуватися певного порядку:
 
1. першим малюється основа,
2. за умовою завдання знаходиться проекція вершини на площині основи,
3. вертикально проводиться висота,
4. проводяться ребра.
TPT 2.JPG
 
 
На малюнку зображена чотирикутна піраміда SABCD
(першою пишуть букву вершини).
 
Основа — чотирикутник ABCD.
 
Вершина проектується в точку перетину діагоналей O — основа висоти або проекція вершини.
 
SASBSCSD — ребра піраміди,
ABBCCDDA — сторони основи.
 
 
В курсі середньої школи в основному є завдання, в яких надані:
 
- правильна піраміда (вершина проектується в центр основи);
- піраміда, вершина якої проектується в центр описаного кола;
- піраміда, вершина якої проектується в центр вписаного кола;
- піраміда, висота якої співпадає з боковим ребром;
- піраміда, висота якої також є висотою бічної грані.
Кути піраміди  
Кути, які утворені бічною гранню і основою піраміди, називаються двогранними кутами при основі піраміди.
Запам'ятай: двогранний кут утворюється двома перпендикулярами.  На малюнку OES.
Щоб визначити цей кут, часто потрібно використовувати теорему про три перпендикуляри.
 
Кути, які утворені бічним ребром і його проекцією на площину основи, називаються кутами між бічним ребром і площиною основи.
На малюнку OCS.
  
Кут, який утворений двома бічними гранями, називається двогранним кутом при бічному ребрі піраміди.
 
Кут, який утворений двома бічними ребрами однієї грані піраміди, називається кутом при вершині піраміди.
На малюнку DSC.
Основні формули піраміди
Площа бічної поверхні дорівнює сумі площ всіх бічних граней піраміди:  S=S1+S2+S3+...
 
Деякі формули підійдуть лише для певних видів піраміди.
 
Площа повної поверхні Sп.п.=S+Sоснови
Об'єм піраміди V= 13SосновиH, де H — висота піраміди.
Формула об'єму використовується для пірамід будь-якого виду.

Розв'язування задач за посиланням:

https://www.youtube.com/watch?v=mBExsQQKO6g

https://www.youtube.com/watch?v=YM_frqS0hw4


-------------------------------------------------------------------------------------------------------------------------

09.04.2021       9 група        математика (факультатив)

Тема уроку:  Конус. Циліндр.

Передивіться відеоурок за посиланням:

https://uroky.com.ua/cylindr-i-konus/

Тіла обертання — об'ємні тіла, що виникають при обертанні плоскої фігури, обмеженої кривою, навколо осі, що лежить в тій же площині.

Циліндр

Циліндр — тіло, яке складається з двох кругів, які суміщаються паралельним перенесенням, та всіх відрізків, що сполучають відповідні точки цих кругів. Круги називаються основами циліндра, а відрізки, що сполучають відповідні точки кіл кругів, — твірними циліндра.

Циліндр
Рис. 1. Циліндр

Площа бічної поверхні циліндра обчислюється за формулою:

Sбіч=2πRH

де R — радіус, а H — висота циліндра.

Об'єм циліндра дорівнює добутку площі його основи на висоту:

V=πR2H

Конус

Конус — це тіло, яке складається із круга — основи конуса, точки, яка не лежить у площині цього круга, — вершини конуса — та всіх відрізків, що сполучають вершину конуса з точками основи.

Конус
Рис. 2. Конус

Твірні — відрізки, що з'єднують вершину з точками основи.

Висота — перпендикуляр, проведений з вершини до центра основи.

Площа бічної поверхні конуса дорівнює половині добутку довжини кола основи на твірну:

Sбіч=πRl

де l — твірна.

Об'єм конуса дорівнює одній третій добутку площі його основи на висоту:

V=13πR2H

Площа зрізаного конуса дорівнює:

S=π(R1+R2)l

Об'єм зрізаного конуса дорівнює:



Немає коментарів:

Дописати коментар