середа, 28 вересня 2022 р.

 29.09.2022   група №2  алгебра і початки аналізу

Тема уроку: Ймовірність події

1. Передивіться відеоурок

https://www.youtube.com/watch?v=W_xuanZa8J8

2. Законспектуйте і вивчіть 

Відношення числа m елементарних подій, які сприяють події A, до загальної кількості n подій простору називається ймовірністю випадкової події А і позначається Р(А), тобто

P(A) = ,

де m — число подій, які сприяють події A; n — число подій простору елементарних подій (0 ≤ m ≤ n).

Імовірність вірогідної події дорівнює 1, імовірність неможливої події дорівнює 0, а ймовірність Р(А) випадкової події A задовольняє умову 0 <Р(А) < 1.

Приклад 1. Імовірність того, що при киданні двох монет випаде два герби, дорівнює , бо простір елементарних подій такий: A1 — випали два герби; A2 — випали герб і число; A3 — вішати число та герб; А4 — випали два числа, а шуканій події сприяє лише одна подія —А1.

Розглянемо приклади розв’язання задач.

Задача 1. У скрині лежать 20 кульок, із яких 12 білих, решта — чорні. Виймають навмання 2 кульки. Яка ймовірність того, що вони будуть білі?

Розв'язання

Загальна кількість елементарних подій випробування (вийнято 2 кульки) дорівнює числу способів, якими можна вийняти 2 кульки із 20, тобто числу комбінацій із 20 елементів по 2 (n = ). Обчислимо кількість елементарних подій, які сприяють події «вийнято 2 білих кульки». Ця кількість дорівнює числу способів, якими можна вийняти 2 кульки із 12 білих, тобто числу комбінацій із 12 елементів по 2 (m = ).

Отже, якщо подія А — «вийнято 2 білі кульки», то

P(A) =  =  =  ∙  = .

Відповідь: .

Задача 2. У скрині лежать 20 кульок, із яких 12 білих, решта—чорні. Виймають навмання 3 кульки. Яка ймовірність того, що серед вибраних 2 кульки будуть білі?

Розв'язання

Загальна кількість елементарних подій випробування («вийнято 3 кульки») дорівнює n = . Обчислимо кількість елементарних подій, які сприяють події «серед 3 вибраних кульок 2 білі». Дві білі кульки із 12 білих кульок можна вибрати способами   , а 1 чорну кульку — 8 способами, тоді події «серед 3 вибраних кульок 2 білі» сприяють m =  ∙ 8 елементарних подій.

Отже, якщо подія А — «серед 3 вибраних кульок 2 білі», то

P(A) =  =  =  ∙  = .

Відповідь: .

Задача 3. У скрині лежать 15 червоних, 9 синіх і 6 зелених кульок, однакових на дотик. Виймають навмання 6 кульок. Яка ймовірність того, що вийнято: 1 зелену, 2 синіх і 3 червоних кульки?

Розв'язання

У цій задачі випробування полягає в тому, що зі скрині виймають 6 кульок. Вийняти 6 кульок із 15 + 9 + 6 = 30 кульок можна n =  способами. Нас цікавить імовірність події A— «вийнято 1 зелену, 2 синіх і 3 червоних кульки». Одну зелену кульку можна вийняти   способами, 2 синіх кульки —  способами, 3 червоних кульки —  способами. Отже, події А сприяють m =  ∙  ∙  елементарних подій. Тоді P(A) =  =  =  = .

Відповідь: .


Немає коментарів:

Дописати коментар